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ABSTRACT 

4 major problem in using SVD as a tool in determining the 
effective rank of a perturbed matrix, is that of distinguishing 
between significantly small and insignificantly large singular 
values. In this paper, we derive confidence regions for the 
perturbed singular values o f  matrices with noisy observation 
data. The analysis is based on the theories o f  perturbations of 
singular values and statistical significance test. Threshold 
bounds for perturbation due to finite precision and 
i.i.d. random models are evaluated. In random models, the 
threshold bounds depend on the dimension of the matrix, the noise 
variance, and a predefined statistical level of significance. 
Results applied to the problem o f  determining the effective order 
o f  a linear AR system f r o m  the approximate rank o f  a sample 
autocorrelation matrix are considered. Various numerical 
examples illustrating the usefulness of these bounds are given. 
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I. Introduction 

One of the most stable and computationally effective 

algorithms in the theory o f  matrix algebra is the Singular Value 

Decomposition (SVD). SVD distinguishes itself from the other 

decomposition algorithms because it is particularly effective in 

the presence of round-off errors or noisy data. 

In the theory of SVD, flip.3183, any m x n real valued matrix 

CS of rank r r  where r S min (m,n), can be decomposed as F1 = U I: 

VT, where U is an m x n matrix with UTU = I ,  V is an orthogonal 

n x n matrix, and I: is an n x n diagonal matrix. The diagonal 

elements aa,a=,...~,~) o f  C can be arranged in a non-increasing 

order and are called the singular values of A ( S V ) .  All the 

elements are nonnegative and exactly r o f  them are strictly 

positive: Specifically, 

(1.1) u l  2 aer ? . . . I  a,- > ur+1 - - . . .=un = 0 .  

Because SVD provides an effective and computationally efficient 

method of determining the effective rank of a matrix, in recent 

years it has been extensively applied in.a number of least 

squares, spectral estimation and system identification problems 

t 1-153. 

In theory, the rank of A can be determined by  counti-ng the 

number of positive SV’s . In practice the actual observed matrix 

B consists of the original matrix A perturbed by round-off errors 

due to finite precision numerical operations and (or) random 

no i ses . 
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The simplest, yet meaningful, procedure is to use an additive 

perturbation model given by  

(1 .2 )  B=A+E. 

While the original m x n data matrix A is assumed to have rank 

r 5 (m,n), the perturbation matrix E is assumed to have small 

values but is of full rank. Then the SV Decomposition o f  B will 

qive a 

( 1 . 3 )  C = diag ( f 3 t , . . . , f 3 n ) l  

where IJ1 I f3, 2 ... I 0,- 2 I ... I 0 ,  L 0, and 

< ( 3 r + 1 9 f 3 , - + e 9 . . . , f 3 r , > ~  will usually be small but not necessarily 

zero. Since 0,- may also be small, the difficult problem we face 

now in rank determination is to determine what is meant by the 

number o f  significant (large) S V ’ s  or equivalently the number of 

insignificant (small) SV’s .  

In order to illustrate these points, consider the following 

3 x 3 matrix A .  

Example 1. 

( 1 . 4 )  A =  [: ; ‘1. 
2 3 

Since the first two columns are linearly independent and the 

third column is the sum o f  the first two columns, the matrix is 

clearly o f  rank 2. Indeed, the SV’s o f  A are 10.342, 2.6539 and 

2.363 x E-17 (as evaluated on a double precision computer with 

numerical precision of less than 16 digits). Thus, from these 

S V ’ s ,  we can easily determine the rank 2 status of A .  
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Now, due to noisy observation, instead of A ,  suppose we have 

a perturbed matrix B given by 

(1 .5 )  B =  [ 1.001 4.982 5.998 . 1 2.998 1.999 5.001 

2.001 1.001 2.990 

Clearly, the third column is no longer the sum of the first 

columns and indeed is not obviously a linear combination of the 

first two columns. Direct evaluation of the determinant of B 

yields a value of -0.176. This indicates B is not singular and 

is o f  rank 3. Similarly, by using Gaussian eliminationr B can be 

reduced to an upper triangular matrix B ,  given by 

I 1.999 5.001 
-12.922 -12.963 . 

0 0 . 5 7 7  
(1 .6)  B, = 

Since the diagonals of B, are clearly non-zero, then B, and thus 

B are also’of rank 3. 

However, a SV Decomposition o f  B yields S V ’ s  of 10.331, 

2.644, and 0.0064. Since the first two SV’s  are significantly 

larger than the relatively small third S V ,  we may be able to 

conclude that B may be the result of a noisy perturbation of a 

rank 2 matrix. In general, we want to have a precise method o f  

rank determination by using the observed S V ’ s  and some 

information o f  the perturbations. - 
The determination of the effective rank t S n of an observed 

matrix B by using its S V ’ s  has been considered previously based 

on various criteria. 
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(1.10) Criterion 4. O F e l  + (3%?+.~. + ... + (34 < 6, 

(3F + (3g + ,.. + (37 1 /e 

(3, + (3l + ... + (3w 
. ] ' 65' (1.11) Criterion 5. 

L 

Criteria 1-5 have been considered in ClO;p.1763, CS;p.1143, 

C5;p.117Jr Cl;p.3323 and C 1 1 3 ,  respectively. Intuitively, all 

these criteria appear reasonable and indeed may work in various 

cases. However, the threshold values of &&, and S-, do not 

appear to be based on any explicit analytical expressions but are 

selected on an ad hoc basis. For a specific finite precision 

round-off model, an analytical expression for 6, was given in 

ClOip.1763. 

In Section 1 1 ,  we consider some preliminary matrix algebra 

definitions and bounds as well as some eigenvalue perturbation 

results summarized into two theorems. In Section 1 1 1 ,  we define 

the effective rank of a matrix based on that of criterion 1 and 

derive analytically the upper and lower bounds on & z . .  Bounds 

based on that of a finite precision model, an i.i.d. random model, 

and a column random model are considered. For the random 

perturbation models, these threshold bounds are derived 

and interpreted in terms of theory o f  statistical significance 

test. A detailed example shows that our bounds are tight and 

useful. In Section IV, we consider an application o f  this 

technique to the determination of the order of an AR system 

model. 
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11. Preliminary Results from Matrix Algebra 

In this section, we collect together various inequality 

results from matrix algebra related to norm o f  vectors and 

matrices and the perturbation of singular values needed for the 

discussions in the next section. Basic concepts and detailed 

expositions on these matters can be found in the books of E l l ,  

133, and C101. 

Consider an m x n matrix A with real-valued elements Ea,,] 

and singular values al L a= L ... ak 2 0 where k 5 min (min,n). 

Then the Frobenious norm (F-norm) of A is defined as 

where the 2-norm of X=(X~,...~X,,)' is defined as 

+x")l/". (2.3) llxll, = (xF+ ... 1-1 

The desired inequalities are stated in two theorems. The 

proof of Theorem 1 is given in Appendix A while the proof o f  

Theorem 2 can be found in C3ip.25-263. 

Theorem 1. 

For any real-valued m x n matrix c\ with column vectors al, de, ..., 
a, and norms defined in (2.l), (2.21, and (2.3), the following 

Let A ,  B,and E be m x n real-valued matrices with B=A+E. Denote 

their respective singular values b y  , 0 %  and E,, i=192,...,k9 
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kSmin(rn,n), each set labeled in nonincreasing order. Then 

(2 .5)  hL-aL1 S E t =  llEll,, i=1,2,...,k. 
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111. Statistical Threshold Bounds 

In this section, we shall use results of Section I 1  to 

derive threshold bounds for effective matrix rank determination 

based on three models o f  perturbations in the observations. From 

Theorem 2, if A is an rn x n matrix of rank r, where 

r 5 min (rn,n), with singular values al I ae ? . . . I  ul- > O1 E is an 

m x n perturbation matrix with elements [e,,] and ?-norm 

E El, and B = &+E, with singular values (3, 1 ... L Q,- L 
... I 6,,, then 

2' 
(3.1) In,+i - ar+1I = &-+l I € 2  = Ikl] 
Hence, if IJ, > E l ,  then 

(3.2) f i x  I (3E L * . .  L 0,- > € 1  I f l r - + i  ?fir+= I - . -  2 01,- 

As a result of (3.2), we will use the following definition for 

the effective rank of 8 .  

Definition: F o r  any m x n matrix B = A+E, a5 defined abover the 

effective rank of B is defined to be r, when 

(3.3 ) (3, > E l  L /Jr+l, 

where 1 S r 5 min (m,n) and E l  = llE/le is the 2-norm of E. 

Clearly, the above definition of effective rank is based on 

criterion 1 in (1.7) with an explicit construction o f  6, = El. 

In light of this definition, a simple sufficient condition f o r  

the determination of the effective rank of B in terms of the 

singular values of A and E is considered in Theorem 3. The p r o o f  

of Theorem 3 is given in Appendix B. 

Theorem 3. 

Let A, 8 ,  and E be  m x n matrices as defined above; with the 

2-norm of E denoted by E l .  If ar > 2 E 1 ,  then 0,- > El L 6,+, and 

B is said to have effective rank of r. 
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While Theorem 3 guarantees the determination of the effective 

rank of B if ar > 2 E l r  in practice, we may not know the singular 

values <aL) of A ,  as well a5 the elements of E are not 

necessarily fully known. In the rest of this section, we shall 

derive upper and lower bounds on € I  to be used in (3.3) for 

effective rank determination under various cases of interest. 

A .  Finite Precision Model 

First, consider the finite precision case where the elements 

[ e k , ]  of E satisfy 

(3.4) -AI2 S e,, S A / 2 ,  1 I i 5 m ,  1 5 j I n. 

Here A may be the step size of an A / D  converter or may be 

related to the round-off errors in some computations. In 

general, A can be taken to be small and at least one of the 

inequalities in ( 3 . 4 )  is assumed to be attained for some e%,. 

Let e, denote the j-th column of E. Then 

( 3 . 5 )  max kkd1 = A / 2 ,  

( 3 . 6 )  max 11e.It = rnax c iek31 .. . + lern,/ =+11/= 5 4ii A/2 .  
3 

From Theorem 1 and ( 3 . 5 ) - ( 3 . 6 ) ,  we obtain 

(3.7) A12 S Ik1le = E , .  5 JiFi A/2 .  

Example 2 .  

Consider the 3 x 3  perturbed matrix B of (1.5) in Example 1. By 

comparison to the matrix 4 of (1.4)~ we have A / 2  = 0.018. Then 

(3.7) yields 

(3.8) 0.018 I E l  I 0 . 0 5 4 .  

Since the S V ’ s  of B are (10.331, 2 . 6 4 4 ,  0 .00641 ,  then 

6 ,  = 2.644 > 0 .054  2 E l  2 0.018 > (3a = 0.0064 shows that the 

effective rank of B is predicted correctly as r=2. 
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B. I.I.D. Random Model 

In many practical situations, the perturbation matrix E 

arises from noises in the measurement modeled by 

(3.9) b L 4  = a + >  + e+,, 1 I i I m, 1 I j I n. 

Thus, there are many possible random variables for characterizing 

<e+,). One of the simplestr yet quite meaningful models is to 

assume <e,,) to be i.i.d. random variables with a Gaussian 

density o f  zero mean and known variance ce. W h i l e  t h e  T . V . ~  e+,, 

can take values over the entire real line, w e  can define a finite 

region such that the r.v. is in this region with high 

probability. Specifically, denote K = < e k 3 :  -k I e+, I k )  and 

K’=Cei,:  e,, I -k or k > Since Prob ( K )  + Prob ( K ’ )  = 1, a 

large Prob ( K )  is; equivalent to a small Prob ( K ’ ) .  From the 

theory of statistical test Clb;pp.3343, if u denotes the level of 

significance of the test, then 

(3.10) Prob ( K ’ )  = Prob ciei,J > k 3  I a, 

For i.i.d. Gaussian {ei,), 

(3.11) Prob ( K ’ )  = 2 Prob Eet,>k3=2(1-9(k/a)), 

where @ ( - )  is the tero-mean and unit variance Gaussian 

probability distribution function 

(3.12) @ ( x )  = ( l / n )  exp - (  tr/2)dt. 

From (3.10)-(3.11), 

From (3.14) and the Gaussian probability distribution table 

Clb;p.5571, a = 0.01 yields approximately k ,  = 2 . 6 ~ ~  while 
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a = 0.05 yields approximately k= = 2u. The operational 

significance of these results for any e%, is that with 0.99 

probability confidence we have 

(3.15) 

and with 0.95 probability confidence, we have 

(3.16) 

max le,,l = k r  = 2 . 6 ~ ~  

max ieLJ = ke = 2u. 

The maximization in (3.15) or (3.16) is with respect to the 

values o f  the realization of the r.v. ler,! for any i or j. Thus 

by using a sufficiently large k ,  w e  will have high probability 

confidence that !ler3!\ S k .  

inequalities of (2.4) in Theorem 1 and (3.14), we have 

Fi rst Bounds 

By using the first and fifth 

(3.17) k S f x  S J m n k .  

For  large values o f  mn and u, the lower and upper bounds in 

(3.17) may not be tight and indeed may become useless. 

However, by using the second and fourth inequalities o f  

(2.4) in Theorem I, we can obtain tighter bounds. For any j ,  

denote 

Then Se/ue has a Chi-square distribution with m degrees of 

freedom C16ip.233-2343. Therefore, for a given level of 

significance a, a constant c (corresponding to k o f  (3.10L) can 

be found such that 

(3.19) Prob CSe/ue > c3 S u. 

Various values o f  c as a function of the level of significance a 

and the degrees of freedom m are  tabulated Clbip.5593 

(corresponding to k of (3.14)). Then from Theorem 1 and 

(3.18)-(3.19), we have 
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Second Bounds 

(3.20) -IT u S € %  5 

Finally, by using the second and third inequalities of ( 2 . 4 )  

in Theorem 1, we obtain an even tighter bound on the right of E,. 

Let 
m n  

(3.21) S: = E  le . .12 

Then as before, b g / u e  has a Chi-square distribution of mn 
i=l '=I 1J 

degrees of freedom. Then as in (3.191, for a given a r  a constant 

cF can be found such that 

2 (3.22) Prob CSF/uEz > cFl 5 a. 

By using Theorem 1 and (3.21)-(3.22), we have the 

While the.bounds in (3.23) are tighter than those of (3.17) and 

(3.201, w e  can simplify the r.h.s. of (3.23) f o r  large values of 

mn. Specifically, when mn > 30, a 5imple (but good) 

approximation of the sample variance of e,, Clbipp.3431 yields 

By using (3.24), (3.23) becomes 

Third Bounds (Modified) 

(3.25) Jc u 1 E, S m u .  

E.kamp1e 3. 

Let 4 be a 7 x 7 matrix of rank 4 given by 

(3.26) A = 

- 3  2 1 7  4 5 3 
1 4  2 6 5 1 0  3 
8 1 5 1 3  5 7 0 
4 2 7 15 1 1  1 1  4 
1 2 1 3 2 5 1  
2 1 3 5 3 5 0  

- 3  10 1 5 2 21 1 
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The S V ' s  o f  A are given by C39.8, 15.99, 6.23, 3.00, 1.09 x 

5.63 x 6.89 x For a level o f  confidence o f  

u = 0.05 and from (3.16) (3.17), (3.201, and (3.25), the upper 

and lower bounds of E l  (denoted by Eu and ELI respectively), are 

given by 

(3.27) First Bounds EL = 2a 5 € 1  I 14 u = E", 

(3.28) Second Bounds EL = 3.75 E I E l  S 9.92 u = Eur 

(3.29) Third Bounds (Modified) EL = 3.75 u I € %  I 7a = E U. 

For noise variance cr" of O.lr 0.01, and 0.001, Table 1 shows the 

six threshold bounds considered in (3.27)-(3.29). F o r  later 

comparisons, the 3a values are dl50 tabulated. 

c" 
Bounds 
First 
Second I 

Mod. Third 

3a 

0.1 0.01 0.001 
E L  Eu EL E" E L  E U  

0.632 4.42 0.2 1.4 0.06 0.442 
1.185 3.137 0.375 0.99 0.118 0.313 
1.185 2.213 0.375 0.7 0.118 0.2213 

0.948 0.3 0.0948 

Table 1. Thresholds Bounds of Example 3 

. Now, consider the observed matrix B=A+E, where E = <er,) 15 

a noise matrix with i.i.d. Gaussian r.v. of zero mean and variance 

u". W e  evaluate the S V ' s  c f l , ,  Oe, ...( 0 7 >  for different 

simulated runs o f  the noise. Table 2 shows the values o f  O ,  and 

(3, for different values o f  the noise variance under different 

simulation runs. 
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RUN 

1 
2 
3 
4 
5 
6 
7 

3.072 0.406 
2.918 0.947 
3.147 0.390 
3.199 0.914 
2.813 0.834 
2.903 0.614 
3.279 0.873 

Table 2. 

2.961 0.136 3.035 0.069 
2.933 0.162 3.00 0.063 
3.09 0.349 3.039 0.057 
2.884 0.247 2.997 0.067 
2.764 0.242 3.096 0.084 
3.117 0.199 2.996 0.047 
3.150 0.231 3.03 0.075 

Singular Values R4. and of E x .  3 
under Different Simulation Runs 

Of course, the main goal in this example is to find meaningful 

estimate E x  such that, R4 2 E l  2 and thus determine the 

effective rank of B as being 4 .  A s  can be seen f r o m  Tables 1 and 

2, by taking E ,  to be any values in the interval [E,.-, E u 3  

obtained under the Modified Third Bounds, ( 3 . 2 5 ) ,  we 

obtain the correct effective order under all three noise 

conditions. However, under the First or Second Bounds, although 

E x  = Eu is still adequate to predict the correct effective rank 

for small noise variances of uz = 0.001 and 0.Ol9 it is not 

adequate under a larger noise variance o f  u" = 0 . 1 .  Indeed, in 

the later cases, a, = 3 < 2Eu (which is equal to 8.84 under the 

First Bounds and 6.274 under the Second Bounds), and thus t h e  

sufficiency condition o f  Theorem 3 is not satisfied. We note a 

threshold of E, 3u, would result in correct decision in most 

but not all cases in this example. 

h rh 

h 

h 

h 

The above discussions showed that the threshold bounds 

derived earlier for 6 ,  under criterion 1 o f  (1.7) are relevant 

and useful in effective rank determination. NOM,. consider the 

use of criteria 2-5 for this example. For brevity, consider a 

typical simulated sequence of S V ' s  of B given b y  C39.936, 15.558, 
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5.935, 3.072, 0.406, 0.3062, 0.02361 with ug = 0.1. We note, (3- 

and lJci under Run 1 of Table 2 are from this set of S V ’ s .  Under 

criterion 2 of (1.81, from C ( J t / f 3 , ,  t=l, ...,7>, we obtain 

C l ,  0.389, 0.148, 0.0769, 0.0102, 0.00767, 0.0005901. Since an 

explicit evaluation of SE2 is unknown, the use of this set of data 

for rank determination is unclear. Under criterion 3 o f  (1.6), 

from C f 3 , / ( 3 t , l ,  t=l, ..., 6 I r  we obtain C2.560, 2.621, 

7.560, 1.326, 12.937). Indeed, since (3&/(37 = 12.937 

7.560, i t  is easy to conclude an effective rank of 6 

4. Under criterion 4 of ( 1 . 1 0 1 ,  C (37, t=O, ... 61 7 

i- t+l 

1.931 

> (3d+/Qm = 

instead of 

yields 

(1881.856, 286-9723 44.921, 9.696, 0.259, 0.0943, 5.570 x 10-al. 

Once again, without an explicit S,, rank determination from this 

set of data is difficult. Finally, under criterion 5 of ( l . l l ) ,  

C(h ( 3 Y / x ( 3 F ,  t=l, ..., 71 yields C0.920, 0.987, 9.997, 
0.99993, 0.99997, 0.99999, 11. If we use a 6, = 0.99 as 

7 

i= 1 a= 1 

considered in C 1 1 1 ,  an effective rank of 3 is predicted. In 

general, the practical applicability of criteria 2-5 for 

effective rank determination without explicit knowledge of S ,  i5 

not clear. 

C. Column I.I.D. Random Model 

In the development of the three bounds as well a5 in Example 

3 in the last sub-section, we assumed that <ei,> is modelled as 

i.i.d. Gaussian r.v.’s. Consequently, the Third Bounds (as well 

as the Modified Third Bounds when applicable) are always tighter 

than the Second Bounds, which in turn are tighter than the First 

Bounds, as shown by (2.4) of Theorem 1. Now, suppose <er,> is 

modeled only as column i.i.d., Gaussian r.v.’s. That is, for 

any j ,  <el,, i = l r  ..., m 1  is assumed to be i.i.d. Gaussian r.v.’s 
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of zero mean and variance cr". Thus, while the elements in any 

column are mutually independent, elements among different columns 

are not required to be mutually independent. 

Upon a reinspection of the steps used in the derivation of 

the above bounds, it is clear that the First Bounds of (3.17) 

and the Second Bounds o f  (3.20) are  still valid. Howeverr the 

Third Bounds (and the Modified Third Bounds) are no longer valid 

since mutually independence o f  e r a  among different columns were 

used. In the next section t h e  concept o f  column i.i.d. and the 

applicable Second Bounds of (3.20) are used. 
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IV. Applications to System Modeling. 

In many communication, control, and signal processing 

problems, there is a fundamental interest in characterizing the 

effective order o f  the system. For example, the determination of 

the effective order of a communication channel is crucially needed 

in the design and analysis o f  equalizers and filters, in terms of 

arithmetic operations and complexity. In this section, we will 

consider the application of our previously defined threshold 

bounds for the efficient determination of the order o f  a linear 

system transfer function in the presence o f  observation noise. 

Consider the autoregressive ( A R )  model 

(4.1) x(n) = a , x ( n - l ) + a e x ( n - 2 ) + - . . + a , x ( n - p )  + u(n), 

and the observed data 

(4.2) y(n) = x(n)+w(n). 

u(n) is an input < ? A >  i.i.d. binary sequence, and w(n) is a noise 

i.i.d. sequence uncorrelated with u(n), with zero mean and 

variance u5. 

In order to evaluate the order p of this A.R. model from the 

observed data Cy(n)), consider the Jx(L+1) matrix A given b y  

(4.3) A=Cr(N), r(M-11, ..., r(M-L)l, 
where 

(4.4) r(M) = CR,(N),R,,(M-l),.. ., R,(M-J+l)IT, 
and R,(k)=ECy(n)y(n-k)I satisfy 

(4.5) J>L+l>p, M-L-J+1>0. 

From E133 and C 1 5 1 ,  it is known that matrix A has rank p, when 

(4.5) is satisfied. In practice, the system autocorrelation 

coefficients are unknown, and samples estimates R ’ , ( k )  

have to be used instead. Denote 
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n=k 

n-1 
(4.6) R’,(k)=(l/N)E y(n)y(n-k), 

where N is the number of available data. 

Let B denote the same matrix as A of (4.31, but with all 

autocorrelation values Rw(-) replaced by R’,,(-) of (4.6). 

Because of the inherent uncertainty o f  these estimates, the last 

L+1-p singular values of B will not be exactly zero. Again we 

define the rank of B (and the order of the system) as equal to r, 

if for a given threshold Es, (3,->€12(3r+l.  From a statistical 

analysis of the sample autocorrelation estimates, the previous 

bounds for E l  are given by 

(4.7) JF u I € 1  s J(L+l)c u, 

where c can be found f r o m  tables of Chi-square distributions with 

J degrees of freedom and a given level of significance, and 

ue sL (l/N)R,(O) 1151. We note that, because of the symmetric 

structure o f  A in (4.3) (and thus also o f  E), any two consecutive 

J x 1  columns of B have (J-1) common elements. Thus, as discussed 

in subsection C of the last section, the tighter Third Bounds of 

(3.23) cannot be applied here, but the Second Bounds o f  (3.20) 

are used in (4.7). In addition to the bounds in (4.71, 

simulation results seem to indicate that an approximate threshold 

o f  

(4.8) E x  = kU 2 kC(l/N)R,(~)l”’~r 
-, 

with typical values of k ranging between 3 and 4, yields the 

correct rank in a large number o f  cases of interest. 

Example 4. 

Consider t h e  AR model with p=2 and coefficients a,=0.4, 

aC=-O.2, UZ = 0.1, and R,(o)=l. F o r  N=1000, M=7, J=4, and L=3, 
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the 4 x 4 matrix B yields S . V . ' s  o f  C0.4756, 0.20109, 0.0685, and 

0.029165.) Let 17~=0.001, then from Cl6ip.5593 with a level of 

significance a=0.05 and for J = 4  degrees of freedom, c=9.488. Thus 

the bounds o f  (4.7) yield 

(4.9) €L=0.0974 I € 1  50.1948 = E, 
A 

By taking €I  to have any value in [EL, Eu3 of (4.91, the order of 

the system can be predicted correctly as 2. From (4.81, the 

approximate threshold o f  E x  = 317 yields El = 0.09486 which is 
'L flJ 

also sufficient to predict the correct order for this example. 
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Appendix A 

Proof o f  Theorem 1. T h e  f i v e  inequalities in (2.4) c a n  b e  shown 
easily proceeding from left to right. 

i )  Let  d b c l  b e  the element in CI with the maximum absolute 

with a 1 in the jth position and zero elsewhere. Since 

lie311 and he,iI e= tla,II e, then 

Appendix B 

Proof o f  Theorem 3. From (2.5) o f  Lemma 2, w e  have 

or+, I E, and Ior--ul-i s cl. Suppose fil- I ul-- 

Otherwise, suppose (3,- > uv.  Then R , >  u,.> 2€1> €12 (3,-+1. 


